Public Economics: Lecture 4 Externalities & Internalities

Cameron LaPoint

Columbia University

July 10, 2017

Socially efficient allocation

Think about demand/supply in a market in terms of private vs. social costs/benefits

- Private marginal cost (PMC): the direct costs to producers of creating an additional unit of a good (i.e. the supply curve)
- Social marginal cost (SMC): the PMC plus any other per-unit production costs imposed on others
- Private marginal benefit (PMB): the direct benefit to consumers of consuming an additional unit of a good (i.e. the demand curve)
- Social marginal benefit (SMB): the PMB minus the marginal costs imposed on others through consumption of the good
- ullet At the socially efficient allocation: SMC = PMC and SMB = PMB

Externalities

- Externalities occur when a party making a decision does not internalize the cost/benefit of their actions for another party
- This is a market failure because private and social incentives diverge either $SMC \neq PMC$, $SMB \neq PMB$, or both
- Uninternalized costs/benefits are called the marginal damage (MD) of the action causing the externality
- An externality can be represented graphically as either a production or consumption externality (matter of interpretation)
- Negative externalities lead to overproduction, while positive externalities lead to underproduction

Real vs. pecuniary externalities

- Important distinction between real and pecuniary externalities
- Pecuniary externality one party does not take into account the effects of their actions on market prices
 - Example: Russian oligarchs buy up luxury apartments in Manhattan, driving housing prices up and preventing local residents from buying
- Only real externalities are market failures there are costs/benefits not reflected in market prices
 - ► Example: steel plant that pollutes a river used for recreation (pollution, or having a clean river, is unpriced)
- Since we are interested in motivations for government intervention, in this course the focus is entirely on real externalities

Types of externalities

- **1** Negative production externalities: SMC > PMC, $Q^* > Q^{eff}$
 - Example: a pharmaceutical company does not take into account the social cost of dumping waste chemicals into a nearby river
- 2 Positive production externalities: SMC < PMC, $Q^* < Q^{eff}$
 - ► Example: the same company fails to take into account the added social benefit of funding R&D for orphan drug treatments
- **1** Negative consumption externalities: SMB < PMB, $Q^* > Q^{eff}$
 - Example: alcohol drinkers fail to internalize the added social cost of increase risk of accidents while intoxicated
- **1** Positive consumption externalities: SMB > PMB, $Q^* < Q^{eff}$
 - Example: parents fail to take into account the added social benefit of reduced disease transmission from childhood vaccines

Negative production externality – illustration

Source: Gruber, Public Finance and Public Policy, Figure 5.2

Positive consumption externality – illustration

Private market solutions: the Coase Theorem

- Private market solution to externalities: create a market that assigns a price to the unpriced resource causing the problem
- Original paper: Coase (1960) examples of neighbors negotiating a resolution to one creating a nuisance for the other
- Usually stated as the two-part Coase "Theorem":
 - When there are well-defined property rights and costless bargaining, negotiation between the party creating the externality and the party affected by the externality delivers the socially optimal quantity
 - The private market solution to an externality problem does not depend on which party is assigned property rights, as long as someone is assigned property rights

Private market solution – Coasian payments

Source: Gruber, Public Finance and Public Policy, Figure 5.5

When does the Coase Theorem work?

- The Coase Theorem holds when...
 - ► Transaction costs are low individuals must be able to trade the previously unpriced resource without barriers
 - Property rights are easily enforced and protected (by government if need be)
 - ► The market for the originally unpriced resource is competitive (no monopolies or asymmetric information)
- The Coase Theorem fails when...
 - ► There are coordination problems: external effect applies to many parties at the same time, so difficult to assign blame and property rights
 - Uncertainty in the MD from the good causing the externality (do we really know the MD from one more smoked cigarette?)
 - ► There are substantial costs to bargaining due to a large number of involved parties

Public solutions to externality problems

- When the private market solution fails, the government can address the externality problem through two main types of interventions
- Price regulation (taxes/subsidies)
 - Tax goods causing negative externalities and subsidize goods causing positive externalities
 - Pigouvian tax/subsidy: restore efficiency by imposing a per-unit tax equal to the MD
- Quantity regulation
 - Direct regulation: fix the quantity at the efficient level
 - ► Cap and trade: introduce a fixed quantity of rights to use the unpriced resource and allow parties to trade these rights

Pigouvian tax in action

Source: Gruber, Public Finance and Public Policy, Figure 5.6

Pigouvian subsidy in action

Source: Gruber, Public Finance and Public Policy, Figure 5.7

Heterogeneous adjustment costs

- Uniform direct regulation will generate allocative inefficiencies if firms have different costs of adjusting production
- Suppose there is a negative externality from pollution caused by production of a good
- Need firm-specific regulation to make sure the marginal cost of abatement (PMC) is equal across firms
 - Otherwise regulation shifts the burden of pollution reduction to firms for which it is particularly costly to adjust
- Since MD may differ by location, government needs to know PMC and PMB by location for direct regulation to be efficient
- Infeasibility of direct regulation a motivation for cap and trade

Sample problem – heterogeneous pollution reduction costs

- 4 firms (A,B,C,D) in an industry with respective total costs of eliminating pollution: R_A^2 , $R_B^2/2$, $R_C^2/3$, $R_D^2/4$
- Total pollution reduction target: $R^* = R_A + R_B + R_C + R_D$
- ullet First derive the marginal cost of meeting the reduction target R^* that minimizes overall costs

$$\implies$$
 need $SMC = MC_A = MC_B = MC_C = MC_D$ to hold

• Compute marginal costs for each firm:

$$MC_A = 2R_A \implies R_A = SMC/2$$

 $MC_B = R_B \implies R_B = SMC$
 $MC_C = 2R_C/3 \implies R_C = 3SMC/2$
 $MC_D = R_D/2 \implies R_D = 2SMC$
 $\implies R^* = 5SMC \implies SMC = R^*/5$

Sample problem continued

- Suppose the government sets a reduction target of $R^* = 120$ and requires each firm to reduce pollution by 30 units
- There will be a DWL from uniform direct regulation because we don't allow firms to trade rights to pollute (i.e. carbon credits)
- We can compute each firm i's contribution to this total DWL

$$DWL_{i} = \frac{1}{2}|(R_{i} - R_{i}^{trade}) \times (SMC - MC_{i})|$$

$$DWL_{A} = \frac{1}{2}|(30 - 12)(24 - 2R_{A}) = 324$$

$$DWL_{B} = \frac{1}{2}|(30 - 24)(24 - R_{B})| = 18$$

$$DWL_{C} = \frac{1}{2}|(30 - 36)(24 - 2R_{C}/3)| = 12$$

$$DWL_{D} = \frac{1}{2}|(30 - 48)(24 - R_{D}/2)| = 81$$

Firms with different reduction costs

Price vs. quantity regulation (no trade and no uncertainty)

- When there is no uncertainty and firms are identical, Pigouvian taxes and uniform quantity regulation yield the socially optimal quantity
- Under no uncertainty a Pigouvian tax and cap and trade are equivalent
- But uniform direct regulation introduces dynamic inefficiencies
 - ► Once a firm complies with the regulation, no incentive to invest in innovations that would reduce pollution and lower costs
- No dynamic inefficiency with Pigouvian tax
 - ► Firms can lower their tax liability by taking steps to reduce their long-run environmental footprint

Price vs. quantity regulation under uncertainty

- Government in practice will not know the exact SMB or SMC of reducing the externality
- If uncertain about the SMB, then the DWL from guessing wrong is the same under a tax vs. cap and trade
- If uncertain about the SMC, the DWL from guessing wrong will differ under the two policies
 - ▶ If more important to minimize costs (SMB curve is flat), then a tax produces a smaller DWL
 - ▶ If more important to get the quantity correct (SMB curve is steep), then cap and trade produces a smaller DWL

Uncertainty about marginal benefits of abatement

Source: Metcalf (2009), "Market-based Policy Options to Control U.S. Greenhouse Gas Emissions," Journal of Economic Perspectives

Uncertainty about MC - tax preferred

Source: Gruber, Public Finance and Public Policy, Figure 5.10a

Uncertainty about MC - regulation preferred

Source: Gruber, Public Finance and Public Policy, Figure 5.10b

Cap and trade with bankable permits

- Allowing firms to save, or "bank" their carbon permits for later use helps improve efficiency of the system
- Restrictions on emissions are expected to get tighter in the future, making future permits more valuable
- Bankable permits allow firms to make relatively inexpensive reductions now to smooth adjustment costs
- EU Emissions Trading Scheme did not allow unused permits allocated in Phase I (2005-2007) to be carried over to Phase II (2008 - 2012)
- Market price for Phase I permits quickly plummeted to zero as Phase II approached

The importance of making permits bankable

Figure 1
Permit Price for Carbon Emissions, Phase 1 of the European Union's Emissions
Trading Scheme

Source: Metcalf (2009), "Market-based Policy Options to Control U.S. Greenhouse Gas Emissions," Journal of Economic Perspectives

Empirical applications

- Need data to guide the design of corrective policies for externalities
- Main questions asked in empirical applications:
 - Is there an externality?
 - If so, what are the marginal damages?
 - What are the costs (and the incidence) of regulations?
 - What are the costs of complying with regulations?
- After answering these questions, use theory to choose price vs.
 quantity regulation and calibrate the corrective tax/subsidy or cap

Is there an externality from air pollution?

What are the effects of air pollution on mortality?

- Why is this a tricky empirical question?
 - ► Location choice people may sort into areas based on the pollution level if they value clean air
 - If examine adult mortality, there is selection because focusing on those who survived
 - Current vs. lifetime exposure
- Chay & Greenstone (2003): look at infant mortality rates and geographic variation in pollution shocks during the 1981-82 recession
- A $1\mu g/m^3$ reduction in TSPs associated with \approx 200 additional infants surviving to be at least one year old
- Large effects even among areas already meeting the EPA air quality standard $(75\mu g/m^3)$

National Trends in Total Suspended Particulates Air Pollution and Infant Mortality Rates

Source: Chay & Greenstone (2003), "The Impact of Air Pollution on Infant Mortality," Quarterly Journal of Economics

A. Trends in Mean TSPs Concentrations, by 1980-1982 Change in TSPs Concentration

Source: Chay & Greenstone (2003), "The Impact of Air Pollution on Infant Mortality," Quarterly Journal of Economics

B. Trends in Internal Infant Mortality Rate, by 1980-1982 Change in TSPs Concentration

Source: Chay & Greenstone (2003), "The Impact of Air Pollution on Infant Mortality," Quarterly Journal of Economics

A. Differences Between the Groups with Big and Small TSPs Changes and Small Income Shocks during 1980-82¹

Source: Chay & Greenstone (2003), "The Impact of Air Pollution on Infant Mortality," Quarterly Journal of Economics

B. Differences Between the Groups with Medium and Small TSPs Changes and Small Income Shocks during 1980-82¹

Source: Chay & Greenstone (2003), "The Impact of Air Pollution on Infant Mortality," Quarterly Journal of Economics

How to estimate marginal damages (\$)?

- Market-based measures
 - ▶ Use present discounted value of lifetime earnings as value of life
 - ▶ Or use changes in the market price of some asset to quantify the MD
- Survey-based measures
 - Ask people how much they are willing to pay to remove an externality
 - ► Purely hypothetical are people incentivized to respond honestly?
- Revealed preferences based on individual choices
 - ▶ How much do people pay to avoid externalities, or how much are they paid to compensate them for the nuisance?
- Revealed preferences based on government choices
 - Government agencies place a value on a statistical life to do cost-benefit analysis of regulation
 - ► Examples: FDA uses \$7.9 million to value cigarette warning labels, EPA uses \$9.1 million to value pollution reduction

Example: market-based approach with auto insurance

- Edlin & Karaca-Mandic (2006): what is the relationship between traffic density and average insurance costs/premia?
 - Externality: if one person starts driving, he/she increases every other driver's accident probability
 - Insurance premium does not depend on individual contribution to insurance costs, but on average cost within a market
 - ► Only assesses MD from insurance externalities, not other externalities due to having an additional driver on the road
- Find large externalities in traffic-dense states (California)
- Exploit differences in changes in traffic density over time DD style design comparing high-density to low-density states

Traffic density and auto insurance costs

Fig. 1.—Traffic density and insurance costs (1996 dollars)

Source: Edlin & Karaca-Mandic (2006), "The Accident Externality from Driving," Journal of Political Economy

Traffic density and auto insurance premia

Fig. 2.—Traffic density and insurance premiums (1996 dollars)

Source: Edlin & Karaca-Mandic (2006), "The Accident Externality from Driving," Journal of Political Economy

Estimating long-term externalities

- Some externalities (e.g. climate change) impose costs that are not realized immediately
- Estimating the costs of climate change is daunting because
 - Difficult to forecast all future impacts
 - Society may adapt and reduce costs
 - ► How do we discount future costs? What is the appropriate discount rate for social vs. private investments?
- Barreca et al. (2016): relationship between heat waves and mortality has vanished over time
 - ▶ Mortality effect of an extremely hot day (> 90° F) declined by $\approx 80\%$ between pre-1960 and post-1960 periods
 - Adoption of residential AC explains the entire decline

Daily temperatures and mortality rates, pre-1960

Source: Barreca et al. (2016), "Adapting to Climate Change: The Remarkable Decline in the U.S. Temperature-Mortality Relationship over the 20th Century," Journal of Political Economy

Daily temperatures and mortality rates, post-1960

Source: Barreca et al. (2016), "Adapting to Climate Change: The Remarkable Decline in the U.S. Temperature-Mortality Relationship over the 20th Century," Journal of Political Economy

Internalities

Internalities

- Internalities: costs or benefits accrued to oneself but that are not taken into consideration when making a consumption decision
- Internal costs can be associated with smoking, drinking, poor diet, not saving enough for retirement
- Internalities are a particular kind of self-control problem
 - Example: a smoker would like to quit smoking, makes a plan to do so, but doesn't follow through on the plan
 - Importantly, this is only an internality problem if a plan is made and not followed
- While uninternalized costs and benefits can accrue immediately, most internality problems involve long-term costs (e.g. health problems)

Optimal excise taxes on addictive goods

- Consider an addictive good like cigarettes what is the optimal excise tax rate on such a good?
- Cigarette consumption imposes externalities increased health care premia, less-productive workers, secondhand smoke, etc.
- But do cigarettes present an internality problem as well?
 - Internalities are difficult to observe they often involve long-term costs/benefits and are based on deviations from psychological intent
- If so, a need a "sin tax" to correct the internality problem on top of any Pigouvian tax used to account for the MD from an externality

Rational addiction

- Becker & Murphy (1988): canonical model of addictive goods consumption that features
 - Rational individuals who choose the extent of their addiction
 - Intertemporal choice problem individuals choose consumption over many time periods
 - Addiction: current consumption increases utility today, decreases future utility, while increasing marginal utility of consumption tomorrow
 - ► Forward-looking behavior: addicts respond to future anticipated price changes (e.g. changes due to a pre-announced tax increase)
 - ▶ If impatient enough (high discount rate), addiction is rational
- In this model no internality to correct: a sin tax would be paternalism

Present-bias

- Gruber & Köszegi (2001, 2004): rational addiction model is empirically indistinguishable from a model with present-bias
 - ► Individuals overconsume today because they put too little weight on future utility consequences of current behavior (internality)
 - ► Forward-looking behavior as in the rational addiction model,
 - ► Consumers respond to price changes but "under-respond"
 - ► Sin tax on top of any Pigouvian tax needed to correct externalities may help individuals consider the true costs of their current consumption
- Key difference between the two models is the assumptions about how individuals discount future utility from consumption
- See Problem 4 on Problem Set 2

Time-consistent behavior

- Time-consistency: if you were to make a plan at some initial time period, you would follow through with that plan in later periods
- ullet Geometric discounting \Longrightarrow time-consistency

$$U = u(c_0) + \sum_{t=1}^{T} \beta^t u(c_t)$$

- U is total utility, $u(\cdot)$ is instantaneous utility, and $\beta < 1$
- ullet The individual discounts future utility at a geometric rate: eta^t
- ullet The discount rate between any two periods t' and t is always $eta^{(t'-t)}$
- The rational addiction model features this property

Time-inconsistent behavior

- Time-inconsistency: if you were to make a plan at some initial time period, you would renege on that plan in future periods

$$U = u(c_0) + \delta \sum_{t=1}^{T} \beta^t u(c_t)$$

- ullet 0 < δ < 1 is the present-bias discount factor
- For any periods beyond tomorrow the individual discounts future utility geometrically
- But when considering the choice between consuming today vs. tomorrow, there is a lower weight on tomorrow's utility
- Time-(in)consistence is a general concept that applies to any decision made over multiple time periods (i.e. not just smoking)

Geometric vs. (quasi) hyperbolic discounting

Empirical evidence of time-inconsistence

- Many survey experiments have shown that subjects exhibit reversals in choices based on the time horizon (today vs. some future period)
- Basic structure is as in Read & Leeuwen (1998):
 - (A) Choose between: (A.1) An apple today
 (A.2) A chocolate chip cookie today
 70%
 - (B) Choose between: (B.1) An apple one week from now 74% (B.2) A chocolate chip cookie one week from now
- DellaVigna & Malmendier (2006): analyze data on gym membership contracts and find people are overconfident about future self-control
 - Average cost of a gym membership is \$75
 - Average number of visits throughout membership is 4
 - ▶ While the pay-per-visit price is \$10

New Year's resolutions

Summary

- Externalities/internalities are market failures that motivate government intervention (failure of the First Welfare Theorem)
- Optimal policy depends on firm heterogeneity, uncertainty about reduction costs, and the flexibility of quantity regulation
- Empirical applications needed to calibrate policy options (e.g. how high should the excise tax rate be?)
 - Distinguishing between real and pecuniary externalities
 - Quantifying MD from externalities several approaches (market-based vs. revealed preference) each with limitations
 - ▶ Providing evidence of internalities that motivate further intervention